3.73 \(\int \frac{1}{x^2 \cos ^{-1}(a x)^4} \, dx\)

Optimal. Leaf size=12 \[ \text{Unintegrable}\left (\frac{1}{x^2 \cos ^{-1}(a x)^4},x\right ) \]

[Out]

Unintegrable[1/(x^2*ArcCos[a*x]^4), x]

________________________________________________________________________________________

Rubi [A]  time = 0.0155747, antiderivative size = 0, normalized size of antiderivative = 0., number of steps used = 0, number of rules used = 0, integrand size = 0, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0., Rules used = {} \[ \int \frac{1}{x^2 \cos ^{-1}(a x)^4} \, dx \]

Verification is Not applicable to the result.

[In]

Int[1/(x^2*ArcCos[a*x]^4),x]

[Out]

Defer[Int][1/(x^2*ArcCos[a*x]^4), x]

Rubi steps

\begin{align*} \int \frac{1}{x^2 \cos ^{-1}(a x)^4} \, dx &=\int \frac{1}{x^2 \cos ^{-1}(a x)^4} \, dx\\ \end{align*}

Mathematica [A]  time = 27.2556, size = 0, normalized size = 0. \[ \int \frac{1}{x^2 \cos ^{-1}(a x)^4} \, dx \]

Verification is Not applicable to the result.

[In]

Integrate[1/(x^2*ArcCos[a*x]^4),x]

[Out]

Integrate[1/(x^2*ArcCos[a*x]^4), x]

________________________________________________________________________________________

Maple [A]  time = 0.214, size = 0, normalized size = 0. \begin{align*} \int{\frac{1}{{x}^{2} \left ( \arccos \left ( ax \right ) \right ) ^{4}}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x^2/arccos(a*x)^4,x)

[Out]

int(1/x^2/arccos(a*x)^4,x)

________________________________________________________________________________________

Maxima [A]  time = 0., size = 0, normalized size = 0. \begin{align*} -\frac{a^{3} x^{4} \arctan \left (\sqrt{a x + 1} \sqrt{-a x + 1}, a x\right )^{3} \int \frac{{\left (a^{4} x^{4} - 20 \, a^{2} x^{2} + 24\right )} \sqrt{a x + 1} \sqrt{-a x + 1}}{{\left (a^{5} x^{7} - a^{3} x^{5}\right )} \arctan \left (\sqrt{a x + 1} \sqrt{-a x + 1}, a x\right )}\,{d x} -{\left (2 \, a^{2} x^{2} -{\left (a^{2} x^{2} - 6\right )} \arctan \left (\sqrt{a x + 1} \sqrt{-a x + 1}, a x\right )^{2}\right )} \sqrt{a x + 1} \sqrt{-a x + 1} +{\left (a^{3} x^{3} - 2 \, a x\right )} \arctan \left (\sqrt{a x + 1} \sqrt{-a x + 1}, a x\right )}{6 \, a^{3} x^{4} \arctan \left (\sqrt{a x + 1} \sqrt{-a x + 1}, a x\right )^{3}} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/arccos(a*x)^4,x, algorithm="maxima")

[Out]

-1/6*(6*a^3*x^4*arctan2(sqrt(a*x + 1)*sqrt(-a*x + 1), a*x)^3*integrate(1/6*(a^4*x^4 - 20*a^2*x^2 + 24)*sqrt(a*
x + 1)*sqrt(-a*x + 1)/((a^5*x^7 - a^3*x^5)*arctan2(sqrt(a*x + 1)*sqrt(-a*x + 1), a*x)), x) - (2*a^2*x^2 - (a^2
*x^2 - 6)*arctan2(sqrt(a*x + 1)*sqrt(-a*x + 1), a*x)^2)*sqrt(a*x + 1)*sqrt(-a*x + 1) + (a^3*x^3 - 2*a*x)*arcta
n2(sqrt(a*x + 1)*sqrt(-a*x + 1), a*x))/(a^3*x^4*arctan2(sqrt(a*x + 1)*sqrt(-a*x + 1), a*x)^3)

________________________________________________________________________________________

Fricas [A]  time = 0., size = 0, normalized size = 0. \begin{align*}{\rm integral}\left (\frac{1}{x^{2} \arccos \left (a x\right )^{4}}, x\right ) \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/arccos(a*x)^4,x, algorithm="fricas")

[Out]

integral(1/(x^2*arccos(a*x)^4), x)

________________________________________________________________________________________

Sympy [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{2} \operatorname{acos}^{4}{\left (a x \right )}}\, dx \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x**2/acos(a*x)**4,x)

[Out]

Integral(1/(x**2*acos(a*x)**4), x)

________________________________________________________________________________________

Giac [A]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{x^{2} \arccos \left (a x\right )^{4}}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x^2/arccos(a*x)^4,x, algorithm="giac")

[Out]

integrate(1/(x^2*arccos(a*x)^4), x)